
DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES
OLD D O M I N I O N UNIVERSITY

t
0

/ 1.1" NORFOLK, V I R G I N I A 23508

SOFTMARE RELIABILITY PERSPECTIVES

BY

La r ry Wilson, P r inc ipa l I nves t i ga to r

and

Wenhiii Shen, Co-Pr incipal I nves t i ga to r

F ina l Report
For the pe r iod ending March 31, 1988

Prepared f o r t h e
Nat ional Aeronautics and Space Admin is t ra t ion
Langley Research Center
Hampton, VA 23665

Under
Research 6rmt W6l-750
Gerard E. Migneault, Technical Moni tor
ISD-Systems Val i d a t i o n Methods Branch

Submitted b y the
Old Dominion University Research Foundation
P. 0. Box 6369
Norfolk, Virginfa 23508

C.3

December 1987

Software]Reliability Perspectives

Larry Wilson
Wenhui Shen

Department of Computer Science
Old Dominion University
Norfolk, VA 23508-8508

Abstract

Software which is used in life critical functions must be known to be highly reliable before insral-
lation. This requires a strong testing program to estimate the reliability, since neither formal methods,
software engineering nor fault tolerant methods can guarantee perfection. Prior to the final testing
software goes through a debugging period and many models have been developed to try to estimate
reliability from the debugging data. However the existing models are poorly validated and often give
poor performance. This paper emphasizes the fact that part of their failures can be attributed to the ran-
dom nature of the debugging data given to these models as input, and it poses the problem of correcting
this defect as an area for future research.

Additional Key Words and Phrases: Growth Models, Software Reliability, Debugging Graph

0. Introduction

Software reliability has become a major concern in the field of computer science. Attempts have
been made to construct more reliable wftware by improved software engineering techniques, formal
methods, and/or fault tolerant methods. Also. models have been developed which will predict the
failure rate software will exhibit in future performance. We will present a survey of the previous
research on software reliability and try ID place it in perspective. A major problem with the reliability
models will be idenri6ed and new directions for future research will be suggested.

This paper has nine sections. Seclions one and two exhibit the reason we need be concerned with
software and terminology necessary to address the problem. Section three describes existing data sets
of value and is followed by sections 0x1 models, formal methods, software engineering, and formal
methods, together these five sections describe what has been done to date. Section eight describes a
common problem for all the models and is followed by the section on conclusions.

1. Motivation

Complex applications of computers which are life critical demand a high degree of reliability
from their computer systems. This problem should be viewed as having two parts, namely the develop-
ment of highly reliable systems and the assessment of that reliability. In order to implement life critical

This research was in part supported by NASA Grant 1-750.

- 2 -

systems we require a certain degree of confidence in their expected performance. It would of came be
acceptable to be able to say a system is perfect, that it will never fail to perform correctly, but we do
not expect that of complicated systems and hence we must ask how reliable are they. Further, it is not
sufficient to say very reliable, since this will not allow us to choose the better of two very reliable sys-
tems or even to say if either is worthy of life dependency. Rather, we must adopt some scheme of
quantifying reliability.

As a preliminary approach, it is de.sirable to split reliability assessment into separate but not equal
problems of hardware reliability and software reliability assessment. The hardware problem is well
understood and correctly modeled as a Poisson Process, with constant arrival rate, during the useful life
of the machine (after burn in and prior to old age). This is modeled by the known bathtub curve and is
well supported by experiments and experience.

Software reliability, the other component of system reliability is more difficult and less well
understood. Early attempts to model it hiave tried to force the characteristics of hardware onto software
without justification. The terminology itsself is too suggestive of hardware, since it suggests more simi-
larities than exist. This is unfortunate but we should be aware that the term 'software reliability' is not
the same as the traditional term 'reliability'. Of course, when previous results fit, we should exploit
that fact, but we must not force old attributes onto a new problem area, simply because we know how
to solve the old problem. The scientific method is to approach a new problem area by observation,
experimentation, data collection, and anallysis. Many opinions have been formed from observation and
much analysis has been done but few scientific experiments have been performed and thus we have
very limited data sources with which to validate our models. We view the valid existing data as prel-
iminary, hence we will refer to observed trends from the data rather than theories or facts.

2. Terminology

A. Software Development Phases
For our purposes we describe the modem development process as consisting of five, not neces-

sarily distinct, phases. We label these phases as specification, programming, debugging, testing and
implementation and briefly describe each phase below.

Phase one consists of writing the specifications. This phase uses critical knowledge about the
intended application and the role to be played by the computer system in order to produce a formal
descriptive document of the task to be performed by the computer.

The second phase, programming, consists of translating the specifications into software for the tar-
geted hardware. It includes design, modlule building, testing and debugging, program integration, and
integration testing.

Debugging is an ongoing process tlhroughout phase one and two, however, we would like to con-
sider that phase three, debugging, begins after all of the code is written and integrated, but is still under
the control of the programmer. The goal during this phase is to find and eliminate errors in the system.

Validation, phase four, consists of acceptance testing and is used to certify or attempt to certify
that the system is reliable enough to use. This may be done with any combination of laboratory testing
against the specifications, laboratory testing against a simulation, or of implementation testing. Unfor-
tunately implementation testing, which checks the specifications in a real environment, is very expen-
sive. Simulation tests model an implementation and then test the software against the model, hoping to
get the benefits of implementation testing more cheaply but they can never be equivalent to implemen-
tation testing and each simulation must itself be validated in order to be useful. Laboratory tests versus
the specifications are relative inexpensive but also less satisfying than implementation or simulation
tests.

Phase five, implementation, begins after successful validation and lasts until the software is aban-
doned or modified. It should be underistood that modified software is a new product, and must be
evaluated as to reliability and hence modification logically dictates a return to phase four or even to

- 3 -

phase three. No change should be viewed as safe without testing, since one cannot presume to guess
the ripple effects of a change through the various layers of software utilized in creating some code.

B. Reliability Assessment
Software reliability has been given many definition including one which defines it as the probabil-

ity that a given piece of software will p,xform correctly in the environment for which it was intended
for a specified period of time, one which, defines it as mean time to failure and one which defines it as
the number of failures expected over some period of time. Since variations in the input frequency,
input usage, or other parameters can effect performance whether it is measured in cpu cycles or calen-
dar time, we recommend that software be modeled as a mathematical function, which for given input is
expected to produce a desired result Thus, reliability is the probability that for the next input, the sys-
tem will perform C O H ~ C ~ ~ Y . It is assumed that the software to be measured has a set of specifications
which determine the input space including the usage distribution. the correct output for each legal input,
what to do with illegal inputs, and sets tine constraints for these computations.

Definition:
The Fundamental Software Reliability (FSR) measure is the probability that the given piece
of software will give the correct output for the next randomly chosen input according to the
input usage distribution Q. "here Q associates with each potential input value, the proba-
bility of that input being chosen.

This definition forms the basis for the Nelson model 1201. It is simple to understand and easy to
approximate. Approximations may be made by drawing random samples from the input space as dic-
tated by the usage distribution and testing them.

The usage distribution Q must be derived from the planned implementation and therefore must be
presumed to vary from one application to the next. Without loss of generality, we choose to view the
input distribution Q as being uniform for the rest of this paper. To justify this, consider that for any
problem with non-uniform Q, we obrairi an equivalent problem in which the input space is made of
copies of the original inputs in proportions dictated by Q. Thus, if we calculate the FSR for the new
software applied to the new problem with uniform distribution of input we get the correct value for the
original problem with an arbitrary distribution.

For software which requires memory from one input cycle to the next it would be more natural to
test by taking a random walk through the input space rather than selecting isolated random inputs.
However, we can also get results by mating the memory as part of the next random input in order to
simulate memory.

For some applications, the specifications and/or usage distributions may be functions of time or of
previous inputs. For time dependency we would allow FSR to be a function of time or an average over
time.

In mathematical terms, we are viewing a piece of software as a function F which for any x in the
domain (input) calculates

where y is in its range (output), subject to time constraints. The performance of F is to be measured
against a set of specifications, S, which determines a function from its domain Ds to range Rs as well
as specifying time constraints. Thus for .my x in Ds, we say our software fails if x is not in the domain
of F or if F(x) fails to equal S(x) (x is considered to not be in the domain of F, if the time constraints
are not met). Precise calculation of FSF! would require the validation of each point in Ds, which will
normally force us to approximate FSR by random sampling from Ds since the input space may be enor-
mous.

- 4 -

3. Experiments and Data
The development of software reliability models has been hampered by inadequate data sets which

are often imprecise and subject to influences other than software. Researchers have often used data
from either a normal debugging operation or from operational data. In each of these cases the data is
influenced by the particular input stream encountered and accurate recording of the data is not the pri-
mary goal of the participants. Further this data is not reproducible under normal circumstances. These
facts infer that one should not to make hife critical decisions based on models which are validated only
with this type of data.

Phyllis Nagel [18,19] has developd a method for producing time-tagged data in a reproducible,
repetitive run experiment. The techniqu: consists of using random inputs to discover 'n' bugs together
with a fix for each bug found. Next the fixes are removed and the program is debugged again using
random inputs, but exploiting the fixes already known. Each debugging results in the removal of most
of the 'n' known bugs and is called a repetition. After fifty repetitions, we have a firm grip on the
failure rate of most of the known bugs. Dunham [5] has conducted similar experiments using
modifications and extensions of the Nagel experiment. These few data sets are also relatively small
when considered against the problem of hying to understand software reliability, but they do remove
the randomness from the debugging process and they are reproducible in a statistical sense.

These data sets are too small and limited in nature to make positive assessments about software
reliability, but the appear to form counterexamples to models which assume all bugs have equal failure
rates. In fact when the data is used in these models, they regularly predict that the last bug has just
been found. That is if we know of ten bugs, but use the data from the first five, then the model
predicts five total bugs, but by adding thle data from the sixth bug, we can get the model to predict six
total.

Knight and Leveson [lo] have conducted what appears to be an excellent experiment, although
for reasons of their own they have refusEd to release the data. Their experiment produced 27 indepen-
dently developed versions of code written to the same specifications. Their analysis concluded that the
independently developed programs did nlDt fail independently, and thus for fault tolerant software archi-
tectures it must not be assumed that components will fail independently when computing reliability.
Eckhardt and Lee [71 draw the same conclusion from a theoretical view point.

One trend, which has been observed in the quality data sets which exist, has been labeled as the
log linear trend. That is if each bug in a program were associated with a mean time to failure for that
particular bug and the bugs were arranged in order of decreasing failure rates, if we plot the rank of
the bug in this ordering versus the logiuithm of its mean time to failure, then the result appears to
approximate a straight line. We use the terms trend and appears since we recognize that these samples
are too limited to do more than suggest possibilities. However, this log linear trend has been observed
in the Nagel work, the Dunham work and the Knight work. Further, Paul Ammon [l] working with
John Knight has observed a log linear trend in the failure rate of seeded bugs. Thus there is some hope
that this trend will tum out to be a property of software in general.

The Dunham [5] experiment led to the discovery of bug interaction. By bug interaction we mean
the phenomenon in which the set of erroir causing inputs for each of two or more bugs is different when
the other bugs are present than it is when they are not. Bug interaction raises the possibility that an
otherwise perfect program might be more reliable with two bugs in it than if we were to fix just one of
them. That is, a fix which does not inseirt a new error into the code may cause the code to be less reli-
able if it were used. Thus software reliability growth models must account for the possibility of nega-
tive growth. The existing data sets indicate that this phenomenon is not rare in real programs and
therefore it should be accounted for in reliability estimations.

4. Models

A. Validation Phase

The purpose of the validation phase is to try to predict the reliability which the software will
exhibit during the operational phase. The only sound theoretical model [21] for doing this is the Nelson
model [20] which is based on random testing governed by the the input distribution. This model is cri-
ticized for requiring too many test cases, failing to take into account the continuity of the input
domain, failing to exploit special test strategies, and failing to exploit complexity measures of the
software to determine length of testing needed. We disagree with the last three objections based on
recent research and observations some of which is not yet published.

Continuity, is in general an unwarranted assumption, we have recently observed [14] a failure
producing pattern in an input space whicli looked like an irregular checker board, with the dark regions
being the failure producing inputs. By refining the grid on the input space and examining a sub region
blown up, we again observe the irregular checker board pattern, that is neighboring points cannot be
used to predict whether a specific input will cause failure or not.

Special test patterns belong in the debugging phase if they belong at all. During debugging we
wish to discover as many of the problems in the software as possible and of course repair them. This
entire process should be completed with a minimum of time and expense, hence we may want to use
special test pauems here in order to increase the reliability of the product which is delivered to be vali-
dated. If we use the same special test patterns in validation then we may get a false reading on reliabil-
ity since those are precisely the input pauerns which have already been heavily tested.

Complexity measures of software and their relationship to reliability is a controversial subject in
the field of software engineering. Most of the metrics tend to predict nicely the length of the code and
none have been scientifically calibrated to the reliability of software.

For reliability estimation purposes we believe that their is no known shortcut during validation. If
one wants to have confidence in the reliability predicted using data generated by testing then one must
pay for tests similar to those required by rhe Nelson model.

B. Debugging Phase
Reliability growth models attempt it0 predict operational reliability from data gathered during the

debugging. This prediction may be used to determine the end of the debugging phase and/or to predict
operational reliability without further testimg. We will selectively discuss models from a 1984 paper by
Ramamoorthy and Bastani [21] as well as the Musa-Okumoto model [17] in terms of their promise in
light of recent experiments. Readers interested in the more complete survey and or the implementation
of these models are referred to the Ramarnoorthy paper.

The General Poisson Model [2], which generalizes the Jelinski-Moranda linear de-eutrophication,
the Shooman, and the Schick Wolverton model. is based on the assumption that all errors contribute
equally to the failure rate of the program. This is intuitively wrong and data fiom experiments
[5,18,19] also shows that it is wrong. Further there are more promising models, which are descendants
of the General Poisson models and are available today.

The Littlewood model [ll] is criticized in [21] for assuming additivity and independence of
failure rates associated with individual faults. These properties are in general not compatible.

The Moranda Geometric De-eutrophication model [16]. the Input Domain model [21] and the
Musa-Okumoto model [17] all exhibit a log linear relationship when the sequence of expected inter-
failure times from the debugging process is plotted versus the sequence index. This pattern has a cer-
tain intuitive appeal since the errors with higher failure rates are expected to be found 6rst and the pat-
tern has been observed in data [5,18,191 as well as in seeded errors [l].

No growth model has demonstrated that it can be used with a high degree of confidence to
predict operational reliability from data generated in the debugging phase in a general setting. Further,
if we possessed a model which made this prediction accurately we would still be unable to dispense
with validation testing since the debugging is under control of the developers of the code and they will
always have strong incentives to show the code is acceptable rather than unacceptable. If we get an
independent group to debug the code then we suffer because they are ill equipped to make the neces-
sary changes and they too are motivated to find the code has achieved the desired reliability. Hence,

- 6 -

the most use we foresee of growth models is to help developers decide when to submit their product to
the validation group which should be independent of the developers.

5. Formal Methods
Formal methods, including correctness proving, are not prepared to deliver perfection for medium

to large programs at this time and there is reason to doubt that they ever will. The technology does not
exist for automated proving of software at this time and if it did, we would be obligated to query the
reliability of the theorem prover itself. One famous effort at establishing the validity of correctness
proving was the multi-year, large dollar effort by SRI on the SIFT operating system. SRI claimed
many things but did not prove the operadng system correct nor did they deliver a functioning operating
system, yet this is often quoted as a succzss of theorem proving. The value of formal methods has not
been exhibited for realistic systems, using either automatic provers or manual. Yelowia and Gerhardt
[8] cast doubts about relying on proofs for perfection in simple applications much less in complicated
ones. We see some possibility for saving time and money in the debugging process if formal methods
are used in the development, but that gain is not guaranteed nor quantified and there will be extra
expense in developing software in this manner, since most software developers are not sophisticated
theorem provers nor do they think in those terms. Further, it has yet to be assessed just what the effect
of proving will have on the testing phase, unless it is perfect then the reliability must be assessed and
no one should expect it to be perfect for medium to large systems handling complicated problems.

Formal methods, with or without theorem provers, may produce code which originally has fewer
bugs, but perfection is unlikely and testing will be necessary. Suppose we want software that fails at
most one time in a million inputs, that normal coding methods produce code such that at the start of
debugging it fails once in one hundred inputs. and that formal methods produce code which fails only
once in ten thousand inputs. If after one week of debugging the normally produced code is failing at
the rate of one in ten thousand, then the net gain in time and money by using formal methods would be
one week of debugging time minus whatever extra costs would be incurred in time and money by using
formal methods. This fictitious example describes some of the items we should consider before adopt-
ing formal methods. Of course, if the formal methods produce code guaranteed to satisfy the reliability
criteria, without debugging or testing, hen we might have a significant savings. Many proponents of
formal methods, point to SIFT as an example of what can be done, having observed S E T being
installed at NASA, where it took well over a year of debugging and testing to get it operational and its
reliability is still unknown, we are certai11 that formal methods should not completely displace testing in
the near future.

6. Software Engineering
Some progress has been made by improving techniques for developing [3] large software systems,

but here has been no significant breakthrough in the area of reliability assessment. That is, improved
specification design techniques and test case selection algorithms have increased productivity and made
it cheaper to identify and remove some of the bugs in a possibly smaller set of bugs than would have
been produced without these techniques. However, specifications are still likely to be ambiguous and
imprecise. It also seems probable that most of the bugs prevented in the design stage would have been
removed early during debugging stage anyway, since these improvements have come about because of
previously observed errors, known to occur often in large software projects and there are test StraEgies
which specifically look for common errors.

The increased modularity plus component development and testing as well as integrated testing as
the system is assembled, makes it cheaper to produce and maintain highly reliable software and it will
prevent many bugs from reaching the de'bug phase. It is far less expensive in time and money to debug
components than removing the same bugs from the final software. Also those bugs which are found
during debugging will be more quickly analyzed and fixed because of increased modularity, increased
documentation, and better understanding of the system by the builders through their experience in

- 7 -

working with the components and assemktling process.
Specialized testing techniques, such as boundary testing, stratified testing and path testing will

help discover remaining bugs more quickly than would random testing. However, after these results are
in we still must assess reliability and since no predictor exists to relate any special test strategy to real-
ity as closely as random testing is expetted to be related, we still must resort to random testing to
assess reliability. Worse case testing would be acceptable but we do not know how to identify the
worse case in general and the situation may have been obscured by the debugging strategy employed.
We could use random input for the debugging phase but that invokes the likelihood of more bugs in the
product being assessed for reliability.

7. Fault Tolerance
Recovery block schemes and n-version programming schemes are used to develop fault tolerant

software. Both schemes employ multiple versions of the software but they differ in the way they select
an answer from the versions and they differ in the way they are normally configured for implementa-
tion. The n-version architecture normally runs n-versions in parallel and a voter selects the proper Out-
put, while in recovery block schemes it is normal to run a single version of the code, test it against the
error detector, and only if it fails the test does a second version of the code run and get tested. Either
scheme may be nested within itself, although it is more common to do so with recovery blocks. For
more information see Wild [a].

Each of the above schemes for tollerating faults promises great gains in reliability if we believe
that the multiple versions fail independently. However, the data in Knight-Leveson [lo] disputes this
possibility and theory developed in Eckhardt-Lee [7] also contradicts the practice of assuming indepen-
dent failures amongst independently devdoped software. It seems more likely that there are easy cases
and hard cases for the software to handlle and that in multiple versions, all versions will have trouble
with the hard cases while getting the easy ones correct, thus we expect dependency amongst the
failures.

Littlewood-Miller [13] shows a new theoretical model for planned diversity of versions, but can
only prove that this might be better for systems of n-programs where only one needs to be correct.
They show that with diversity a one OUI. of n system may perfonn better than would be predicted by
assuming independent failures, they do riot show how to exploit this in a realistic application, but one
can visualize using this property for systems where it is critical never to be wrong and you have the
option of not doing anything. They also show that if two out of three are needed to be correct then
diversity will possibly not help and the system is not expected to perform as if the versions failed
independently.

If one could build perfect fault tolerant systems then that would solve the reliability problem of
software. However, it is unlikely that we can mass produce such systems, so we must assess their relia-
bility, just like any other software system except they will tend to be larger and more complex due to
fault tolerant features. We can try and asess the reliability of the component versions and to use these
numbers to calculate the reliability of the fault tolerant system. To do this we need the reliability of
each of the n-versions and of the acceptilnce test plus a scheme for using these component reliabilities
to predict the system reliability. Fault tolerance does not necessarily solve the reliability problem, it
merely modifies it and possibly complicates it. To say it another way fault tolerance may or may not
make more reliable systems but it does not obviate the need for reliability assessment.

8. The Debugging Graph
Let P be a program which at the start of the debugging process would be perfect if each of N

fixes fi, f2 , ..., fN were applies to N bugs b,, b,, ..., bN respectively. We indicate alternate versions of
the program by adding subscripts to P to indicate which fixes have been installed, thus Pab, is the ver-
sion of P which results when precisely itixes f,. fb, and fc have been installed. We obtain a directed
graph by letting the versions be nodes and letting each edge represent the installation of one new fix.

- 8 -

This results in a graph with initial node P at level N and terminal node Pl, ..., at level 0. Thus the
level of a node in the graph is the same as the number of bugs remaining in that node. If we debug by
random testing until we have found n bugs and their corresponding n fixes, then without loss of general-
ity we will assume that fl, f2, ..., f, have been installed in that order (we could always renumber them).
If multiple fixes are required for a single. failure then we arbitrarily choose the order in which they are
applied. Thus after possibly renumbering some nodes in G we obtain a subgraph G' which begins at P
and terminates at Pl, z , ,.

We would like to be able to estimate the unknown features of G based on the features of G'. In
particular we would like to know the reliability of Pl, ..,, , and/or how much more time we expect to
spend in the debugging process in order to reach a desired level of reliability.

The information available to us when we arrive at P is typically the M T F data for versions P,
PI, ...' 5, 2. I?' Since existing data set ,indicate an exponential decline in the failure rate of individual
bugs arranged m the order of decreasing MlTF, we would like to use this data to predict the MlTF of
'1.4 ..., n. Unfortunately, the debugging dim is subject to random variations. that is is we were to debug
agam by making a new selection of random inputs we would not expect to get the same data as we ori-
ginally obtained. If we make predictions based on debugging data from one pass at removing the bugs
then we will somehow have to account for all of the uncertainty in the data due to the random choices

The process of removing n particular bugs can be characterized as taking a random walk on G'
from P to '1, 2. ..., n* with the walk goveined by the probabilities of choosing each individual arc. For
example if b, has twice as large a failure rate in P as b2 then we are twice as likely to go from P to Pl
as we are to go to Pr Even though then: is a most likely path from P to Pl, ..., ,, it is not unusual to
choose a different path when debugging itnd end up trying to make predictions based on this secondary
path. The variance in path selection must be accounted for by the reliability models and it is our con-
jecture that this variance possibly plays a large role in the poor performance of the models.

...

of input.

9. Summary

The randomness present in data generated by the debugging process has been identified as a prob-
lem for software reliability models. Future research is needed to understand the extent of the damage
due to randomness and to propose and evilluate methods of removing the randomness from the data.

- 9 -

8. References
1. Paul Ammon and John Knight, "An Experimental Evaluation of Simple Methods for Seeding Pro-

gram Errors," Computer Science Report. Tr-85-08, Univ, of Va, Charlottesville, V a July 1, 1986.

2. J. E. Angus, R. E. Schafer, and A Sukert, "Software Reliability Model Validation," in Roc. Annu.
Rel. and Maintainability Symp., San Fmcisco, CA, Jan. 1980, pp. 191-199.

3. Fred Brooks, "No Silver Bullet- Elssence and Accidents of Software Engineering," Information
Processing 86, H.-J. Kugler(ed), Elaivier Science Publishers B. V. (North Holland), IFIP, 1986.

4. T. A. Budd, A. DeMillo, R. J. Liptn, and F. G. Sayward, "Theoretical and Empirical Studies on
Using Program Mutation to Test the Functional Correctness of Programs,," Proceedings ACM
Symposium on Principles of Programming Languages, 1980.

5. Janet R Dunham, "Experiments in Software Reliability: Life- Critical Applications," IEEE Tran-
sactions on Software Reliability, Vol SE-12, No 1, Jan 1986, pp110-123.

6. Janet R Dunham and John L. Pierce, "An Experiment in Software Reliability," NASA Contractor
Report 172553, March 1985.

7. Dave E. Eckhardt and Larry D I=, "A Theoretical Basis for the Analysis of Multiversion
Software Subject to Coincident Emm," IEEE Transactions on Software Engineering, vol., SE-11,
Dec 1985.

8. S. L. Gerhart and L. Yelowitz, "Observations of Fallibility in Modem Programming Methodolo-
gies," IEEE Transactions on Software Engineering, vol. SE-2, No. 3, Sept., 1976.

9. Z. Jelinski and P. Moranda,'"Software Reliability Research," in Statistical Computer Performance
Evaluation, W. Freiberger, Ed. New York: Academic, 1972, pp. 465484.

10. John C. Knight and Nancy G. Lweson, "An Experimental Evaluation of the Assumption of
Independence in Multiversion Programming", in IEEE Transactions on Software Engineering, vol
SE-12. NO 1, Jan 1986.

11. Bev Littlewood, "A Bayesian Diffeirential Debugging Model for Software Reliability," Dep. Math
City Univ., London, England, June 1979; also in Proc. COMFSAC 1980, Chicago, 11, pp. 511-
519.

12. Bev Littlewood, "How to Measure Software Reliability and How not to ...," IEEE Trans. Rel., vol
R-28 pp 103-1 10.

13. Bev Littlewood and Douglas R. Miller, "A Conceptual Model of Multi- Version Software",
Proceedings of 3rd IFTCS, Bremehaven, Sept., 1987.

14. G. E. Migneault and B. Becher, unpublished research which is ongoing at NASA, Langley
Research Center, Hampton, Va

15. Douglas R. Miller, "Exponential Onier Statistic Models of Software Reliability Growth," in IEEE
Transactions on Software Engineering, vol SE-12, No 1, Jan 1986, pp12-24.

- 10 -

16. P. B. Moranda,
Annual Reliability and Maintainability Symposium.

Prediction of Software Reliability During Debugging," Proceedings of the 1975

17. J. D. Musa and K Okumoto, "A Logarithmic Poisson Execution Time Model for Software Relia-
bility Measurement", 1984, IEEE.

18. Phyllis M. Nagel and James A. Slcrivan, "Software Reliability: Repetitive Run Experimentation
and Modeling" NASA Contractor Report 165836, Feb 1982.

19. Phyllis M. Nagel, Fritz W. Scholz ;md James A. Skrivan, "Software Reliability: Additional Inves-
tigations Into Modeling with Replicated Experiments," NASA Contractor Report 172378, June
1984.

20. E. Nelson, "Estimating Software Reliability from Test Data," in Microelectronics and Reliability,
vol. 17. New York: Pergamon, 1978, pp. 67-74.

21. C. V. Ramamoorthy and Farokh B. Bastani, "Software Reliability- Status and Perspectives," in
IEEE Transactions on Software Engineering, vol. SE-8No. 4, July 1982, pp. 354-371.

22. G. J. Schick and R. W. Wolverton, "Achieving Reliability in Large Scale Software Systems," in
Proc. 1974 Rel. and Maintainability Symp., Los Angelos. CA. Jan 1974, pp. 302-319.

23. M. L. Shooman, "Probabilistic Models for Software Reliability Prediction," in Statistical Com-
puter Performance Evaluation, W. Fireiberger, Ed. New York Academic, 1972, pp. 485-502.

24. Christian Wild, "Concepts and Tmninology for Analysis of Fault Tolerant Hardware and
Software," Interim Report Phase 2, Task 'ITD#2 of Contract no DTRS-57-84-C-0013, Mandex
Inc, Springfield, Va, Oct 1986.

